CNAViz: User-guided local and global copy-number segmentation for tumor sequencing data

05-20-2022

Zubair Lalani^{*, 1}, <u>Gillian Chu^{*, 1}</u>, Silas Hsu¹, Simone Zaccaria^{†, 2, 3}, and Mohammed El-Kebir^{†, 1, 4}

¹ Department of Computer Science, University of Illinois at Urbana-Champaign, ² Computational Cancer Genomics Group, University College London Cancer Institute ³, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, ⁴ Cancer Center at Illinois, University of Illinois Urbana-Champaign

* joint first-author, † corresponding author

Background & Motivation

- CNAViz Toolkit
 - Overview
 - Coordinate Plots
 - Linear Plots
- Exploration of Simulated Data
- Results on Biological Data
- Concluding Remarks

Copy number aberrations (CNAs) are ubiquitous in cancer. To understand cancer evolution and progression, we need to study these CNAs.

Cancer Evolution through Copy Number Aberrations (CNAs)

Copy Number Calling: Signals for Segmentation

CNAViz: User-guided Unification of Local and Global Insights

A cluster/segment is a set of bins with shared copy numbers. This is a key preprocessing since input data is noisy.

CNA Calling: Pros/Cons to Current Segmentation Approaches

Local approach via ASCAT [Van Loo et al., PNAS 2010]

- + detects small focal CNAs
- prone to noise and difficult to see trends

Global approach via HATCHet [Zaccaria et al., *Nature Communication* 2020]

- + aggregation across genome overcomes noise
- focal CNAs might be missed

Key Motivation: Current segmentation methods leave room for improvement in copy number calling.

CNA Calling: Pros/Cons to Current Segmentation Approaches

Local approach via ASCAT [Van Loo et al., PNAS 2010]

CNAViz: User-guided Unification of Local and Global Insights

Background & Motivation

CNAViz Toolkit

- Overview
- Coordinate Plots
- Linear Plots
- Exploration of Simulated Data
- Results on Biological Data
- Concluding Remarks

CNAViz Toolkit: Overview

Illustrated Abilities:

- Zooming and Panning
- Hovering
- Selecting/De-selecting
- Assigning to Clusters

Motivation:

- The ability to split and merge clusters across chromosomes

Prostate Cancer Patient A12, Gundem et al., Nature 2015

Illustrated Abilities:

- Zooming and Panning
- Hovering
- Selecting/De-selecting
- Assigning to Clusters

Motivation:

 The ability to split and merge clusters contiguously across the chromosomes

CNAViz Toolkit: Linear and Global Synced

Prostate Cancer Patient A12, Gundem et al., Nature 2015

Motivation:

- The ability to split and merge clusters considering local chromosome and global aggregate information

CNAViz Toolkit: Synced Samples

Prostate Cancer Patient A12, Gundem et al., Nature 2015

Illustrated Abilities:

- Zooming and Panning
- Hovering
- Selecting/De-selecting
- Assigning to Clusters
- Synced across plots and samples

Motivation:

- The ability to share information across tumor samples

CNAViz Toolkit: Gene Annotations

Prostate Cancer Patient A12, Gundem et al., Nature 2015

Illustrated Abilities:

- Zooming and Panning
- Hovering
- Visualizing driver genes

Motivation:

 The ability to investigate whether driver genes are deleted or amplified

CNAViz Toolkit: Real-time Clustering Analysis

[Rousseeuw et al. 1987]

By using CNAViz to combine local and global segmentation, we can perform more accurate copy-number calling.

- Background & Motivation
- CNAViz Toolkit
 - Overview
 - Coordinate Plots
 - Linear Plots
- Exploration of Simulated Data
- Results on Biological Data
- Concluding Remarks

[Zaccaria and Raphael, Nature 2020]

Simulated Data (MASCoTE):

- We used 4 bulk sequencing samples, with 2 tumor clones each (ground truth copy numbers)
- Assess our tool in *de novo* mode or with existing local or global segmentation
- Do we improve the segmentation with CNAViz?

Method	# Clusters	Adjusted Rand Index	V-measure
Ground Truth	22	-	-
CNAViz (de novo)	24	0.99553	0.97048
HATCHet	18	0.99457	0.96303
HATCHet + CNAViz	24	0.99539	0.96983
ASCAT	69	0.07376	0.21984
ASCAT + CNAViz	21	0.99509	0.96804

Using CNAViz in *de novo* mode or to refine existing segmentation improves the clustering by several metrics

- Background & Motivation
- CNAViz Toolkit
 - Overview
 - Coordinate Plots
 - Linear Plots
- Exploration of Simulated Data
- Results on Biological Data
- Concluding Remarks

[Casasent et al. Cell 2018]

[Casasent et al. Cell 2018]

[Patient P10, Casasent et al. Cell 2018] Copy number calling on 20 Driver Genes 2 Single Cell Data (Published) 0 6 MYCN MLLT11 TRIM24 0 0 0 LIFR 11 D a a dia a si a 1 Bulk Data (HATCHet)

% Correct = $\frac{11}{20}$

55% Accuracy

[Casasent et al. Cell 2018]

[Patient P10, Casasent et al. Cell 2018]

Newly Assigned Amplifications

[Patient P10, Casasent et al. Cell 2018]

By using CNAViz to refine global segmentation, we can perform more accurate copy-number aberrations.

Conclusions & Discussion

CNAViz is an interactive user-guided tool to improve copy-number calling on noisy sequencing data.

By using CNAViz to combine local and global segmentation, we can perform more accurate copy-number aberrations.

Summary:

- All examples were on bulk but same applies to single cell
- CNAViz can be run in de novo mode and refinement mode
- Better clustering by several metrics on simulated data
- Better classification of important driver genes on real data

Future Work:

- Modeling cohort effects
- Real-time suggestions
- Generate generalizable suggestions based on cohort tumor data
- Crowd-sourcing segmentation solutions on public datasets (e.g. TCGA, ICGC)

Availability: https://elkebir-group.github.io/cnaviz/

Thank you for your attention! Questions?

Thanks to Zubair, Mohammed, Simone and the rest of the El-Kebir lab!

Availability: https://elkebir-group.github.io/cnaviz/

Simone is hiring for a **Postdoc in Computational Cancer Genomics** working with single cells!

Details: <u>https://www.ucl.ac.uk/can</u> <u>cer/zaccaria-lab</u> Twitter: @ZaccaSimo Email: <u>s.zaccaria@ucl.ac.uk</u>

