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Overview



Cancer Evolution
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Clonal Evolution Theory of Cancer
[Nowell, 1976]

Copy number aberrations (CNAs) are ubiquitous in cancer. To understand 
cancer evolution and progression, we need to study these CNAs.



Cancer Evolution
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Cancer Evolution through Copy Number Aberrations (CNAs)
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Copy Number Calling: Signals for Segmentation
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1. Read Depth Ratio (RDR) – number of sequencing reads we 
observe across the genome  
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Prostate Cancer Patient A12, Gundem et al., Nature 2015
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Understanding Heterogeneity
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A cluster/segment is a set of bins with shared copy numbers. This is a key preprocessing since input data is noisy.

CNAViz: User-guided Unification of Local and Global Insights

Input Data

Copy Number 
Caller

Method?
Local Approach

Global Approach

Segmentation

Prostate Cancer Patient A12, Gundem et al., Nature 20153
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Segmentation
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Global approach via HATCHet 
[Zaccaria et al., Nature Communication 2020]

8 clusters

CNA Calling: Pros/Cons to Current Segmentation Approaches

43 clusters

Local approach via ASCAT 
[Van Loo et al., PNAS 2010]

Key Motivation: Current segmentation methods leave room for improvement in copy number calling.

+ aggregation across genome overcomes noise
- focal CNAs might be missed

+ detects small focal CNAs
- prone to noise and difficult to see trends

Prostate Cancer Patient A12, Gundem et al., Nature 2015



Segmentation
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Global approach via HATCHet 
[Zaccaria et al., Nature Communications 2020]

8 clusters

CNA Calling: Pros/Cons to Current Segmentation Approaches

43 clusters

Local approach via ASCAT [Van Loo et al., PNAS 2010]

+ aggregation across genome overcomes noise
- focal CNAs might be missed

+ detects small focal CNAs
- prone to noise and difficult to see trends

CNAViz

CNAViz is a user-guided interactive tool to 
perform segmentation. By using CNAViz to 
combine local and global segmentation, we 
can perform more accurate copy-number 

aberrations.



Understanding Heterogeneity
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By using CNAViz to combine local and global segmentation, we can perform more accurate copy-number 
aberrations.

CNAViz: User-guided Unification of Local and Global Insights

Input Data

Segmentation

Local Approach (e.g. ASCAT)

Global Approach (e.g. 
HATCHet)

Copy Number 
Caller

Method

CNAViz: de novo clustering

CNAVizCNAViz: refinement
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CNAViz Toolkit: Overview
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CNAViz Toolkit: Overview

(a) (b) (c)

(d)

(e)

Prostate Cancer Patient A12, Gundem et al., Nature 2015



CNAViz Toolkit: Coordinate Plots 
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CNAViz Toolkit: Global View

Illustrated Abilities:
- Zooming and Panning
- Hovering
- Selecting/De-selecting
- Assigning to Clusters

Motivation:
- The ability to split and merge clusters 
across chromosomes

Prostate Cancer Patient A12, Gundem et al., Nature 2015



CNAViz Toolkit: Linear Plots 
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CNAViz Toolkit: Local View

Illustrated Abilities:
- Zooming and Panning
- Hovering
- Selecting/De-selecting
- Assigning to Clusters

Motivation:
- The ability to split and merge 

clusters contiguously across the 
chromosomes

Prostate Cancer Patient A12, Gundem et al., Nature 2015



CNAViz Toolkit: Linear and Global Synced
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CNAViz Toolkit: Linear and Global Synced

Motivation:
- The ability to split and merge clusters considering local chromosome and global aggregate 

information 

Prostate Cancer Patient A12, Gundem et al., Nature 2015



CNAViz Toolkit: Linear and Global Synced
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CNAViz Toolkit: Synced Samples

Illustrated Abilities:
- Zooming and Panning
- Hovering
- Selecting/De-selecting
- Assigning to Clusters
- Synced across plots and samples

Motivation:
- The ability to share information 

across tumor samples

Prostate Cancer Patient A12, Gundem et al., Nature 2015



CNAViz Toolkit: Gene Annotations
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CNAViz Toolkit: Gene Annotations

Illustrated Abilities:
- Zooming and Panning
- Hovering
- Visualizing driver genes

Motivation:
- The ability to investigate whether 

driver genes are deleted or 
amplified

Prostate Cancer Patient A12, Gundem et al., Nature 2015



CNAViz Toolkit: Gene Annotations
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CNAViz Toolkit: Real-time Clustering Analysis

[Rousseeuw et al. 1987]

Silhouette Score [-1, 1]
- Homogeneity: how well bins 

match other bins in the same 
cluster

- Separation: how well bins 
separate from bins in other 
clusters

Euclidean Distance from all 
other cluster centroids



Understanding Heterogeneity
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By using CNAViz to combine local and global segmentation, we can perform more accurate copy-number calling.

CNAViz: User-guided Insights

Input Data

Segmentation

Local Approach

Global Approach Copy Number 
Caller

Method

CNAViz: De Novo Clustering

CNAVizCNAViz: refinement
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Real Data: Context
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Simulated Data (MASCoTE):
- We used 4 bulk sequencing samples, with 2 tumor clones each (ground truth copy numbers)
- Assess our tool in de novo mode or with existing local or global segmentation 
- Do we improve the segmentation with CNAViz?

Simulated Data: Context

[Zaccaria and Raphael, Nature 2020]

Segmentation

Local Approach

Global Approach

CNAViz: De Novo Clustering

CNAVizCNAViz: refinement



Simulated Data: Results
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Simulated Data: Results

Method # Clusters Adjusted Rand 
Index

V-measure

Ground Truth 22 - -

CNAViz
(de novo)

24 0.99553 0.97048

HATCHet 18 0.99457 0.96303

HATCHet + 
CNAViz

24 0.99539 0.96983

ASCAT 69 0.07376 0.21984

ASCAT + CNAViz 21 0.99509 0.96804

Using CNAViz in de novo mode or to refine existing segmentation improves the clustering by several metrics
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Real Data: Context
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[Casasent et al. Cell 2018]

Real Data: Context

Global 
segmentation 
via HATCHet

Validation

CNA calling 
via HATCHet

CNAViz 
(refinement)

Inference



Real Data: Context
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[Casasent et al. Cell 2018]

Real Data: Context

Global 
segmentation 
via HATCHet

Validation

CNA calling 
via HATCHet

CNAViz 
(refinement)

Inference



Real Data: Context
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Real Data: Results

Copy number calling on 
20 Driver Genes

[Patient P10, Casasent et al. Cell 2018]
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Real Data: Context
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[Casasent et al. Cell 2018]

Real Data: Context

Global 
segmentation 
via HATCHet

Validation

CNA calling 
via HATCHet

CNAViz 
(refinement)

Inference



Real Data: Context
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Real Data: Results

LIFR

MYCN
MLLT11
TRIM24
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80% Accuracy!

[Patient P10, Casasent et al. Cell 2018]
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Real Data: Context
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Real Data: Results

[Patient P10, Casasent et al. Cell 2018]

By using CNAViz to refine global segmentation, we can perform more accurate copy-number aberrations.



Conclusions & Discussion
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Summary:
- All examples were on bulk but same applies to single cell
- CNAViz can be run in de novo mode and refinement mode
- Better clustering by several metrics on simulated data
- Better classification of important driver genes on real data

Future Work:
- Modeling cohort effects
- Real-time suggestions
- Generate generalizable suggestions based on cohort tumor data
- Crowd-sourcing segmentation solutions on public datasets (e.g. TCGA, ICGC)

Availability: https://elkebir-group.github.io/cnaviz/

Conclusions & Discussion

CNAViz is an interactive user-guided tool to improve copy-number calling on noisy sequencing data.

By using CNAViz to combine local and global segmentation, we can perform more accurate copy-number aberrations.

CNAViz

https://elkebir-group.github.io/cnaviz/


GRAINGER ENGINEERING

Thank you for your attention! Questions?

Thanks to Zubair, Mohammed, Simone and the rest of the El-Kebir lab!
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